Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36834395

ABSTRACT

Being diverse and widely distributed globally, bats are a known reservoir of a series of emerging zoonotic viruses. We studied fecal viromes of twenty-six bats captured in 2015 in the Moscow Region and found 13 of 26 (50%) samples to be coronavirus positive. Of P. nathusii (the Nathusius' pipistrelle), 3 of 6 samples were carriers of a novel MERS-related betacoronavirus. We sequenced and assembled the complete genome of this betacoronavirus and named it MOW-BatCoV strain 15-22. Whole genome phylogenetic analysis suggests that MOW-BatCoV/15-22 falls into a distinct subclade closely related to human and camel MERS-CoV. Unexpectedly, the phylogenetic analysis of the novel MOW-BatCoV/15-22 spike gene showed the closest similarity to CoVs from Erinaceus europaeus (European hedgehog). We suppose MOW-BatCoV could have arisen as a result of recombination between ancestral viruses of bats and hedgehogs. Molecular docking analysis of MOW-BatCoV/15-22 spike glycoprotein binding to DPP4 receptors of different mammals predicted the highest binding ability with DPP4 of the Myotis brandtii bat (docking score -320.15) and the E. europaeus (docking score -294.51). Hedgehogs are widely kept as pets and are commonly found in areas of human habitation. As this novel bat-CoV is likely capable of infecting hedgehogs, we suggest hedgehogs can act as intermediate hosts between bats and humans for other bat-CoVs.


Subject(s)
Chiroptera , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Betacoronavirus , Chiroptera/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Hedgehogs/virology , Molecular Docking Simulation , Moscow , Phylogeny , Russia
2.
Virus Evol ; 8(1): veac017, 2022.
Article in English | MEDLINE | ID: mdl-35371558

ABSTRACT

Delta has outcompeted most preexisting variants of SARS-CoV-2, becoming the globally predominant lineage by mid-2021. Its subsequent evolution has led to the emergence of multiple sublineages, most of which are well-mixed between countries. By contrast, here we show that nearly the entire Delta epidemic in Russia has probably descended from a single import event, or from multiple closely timed imports from a single poorly sampled geographic location. Indeed, over 90 per cent of Delta samples in Russia are characterized by the nsp2:K81N + ORF7a:P45L pair of mutations which is rare outside Russia, putting them in the AY.122 sublineage. The AY.122 lineage was frequent in Russia among Delta samples from the start, and has not increased in frequency in other countries where it has been observed, suggesting that its high prevalence in Russia has probably resulted from a random founder effect rather than a transmission advantage. The apartness of the genetic composition of the Delta epidemic in Russia makes Russia somewhat unusual, although not exceptional, among other countries.

3.
Viruses ; 13(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34696436

ABSTRACT

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


Subject(s)
Alphacoronavirus/isolation & purification , Betacoronavirus/isolation & purification , Chiroptera/virology , Genome, Viral/genetics , Metagenome/genetics , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Chiroptera/genetics , Computational Biology/methods , Feces/virology , High-Throughput Nucleotide Sequencing , Metagenomics/methods , Moscow , Phycodnaviridae/classification , Phycodnaviridae/genetics , Phycodnaviridae/isolation & purification , Sequence Analysis, DNA
4.
BMC Infect Dis ; 21(1): 959, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34530778

ABSTRACT

BACKGROUND: The dual infection with SARS-CoV-2 is poorly described and is currently under discussion. We present a study of two strains of SARS-CoV-2 detected in the same patient during the same disease presentation. CASE PRESENTATION: A patient in their 90 s was hospitalised with fever. Oropharyngeal swab obtained on the next day (sample 1) tested positive for SARS-CoV-2. Five days later, the patient was transferred to the ICU (intensive care unit) of the hospital specialising in the treatment of COVID-19 patients, where the patient's condition progressively worsened and continuous oxygen insufflation was required. Repeated oropharyngeal swab (sample 2), which was taken eight days after the first one, also tested positive for SARS-CoV-2. After 5 days of ICU treatment, the patient died. The cause of death was a coronavirus infection, which progressed unfavourably due to premorbid status. We have performed sequencing of full SARS-CoV-2 genomes from oropharyngeal swabs obtained eight days apart. Genomic analysis revealed the presence of two genetically distant SARS-CoV-2 strains in both swabs. Detected strains belong to different phylogenetic clades (GH and GR) and differ in seven nucleotide positions. The relative abundance of strains was 70% (GH) and 30% (GR) in the first swab, and 3% (GH) and 97% (GR) in the second swab. CONCLUSIONS: Our findings suggest that the patient was infected by two genetically distinct SARS-CoV-2 strains at the same time. One of the possible explanations is that the second infection was hospital-acquired. Change of the dominant strain ratio during disease manifestation could be explained by the advantage or higher virulence of the GR clade strain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Intensive Care Units , Phylogeny , Specimen Handling
5.
Front Genet ; 12: 674783, 2021.
Article in English | MEDLINE | ID: mdl-34306019

ABSTRACT

Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus-Allium-is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes' annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the "normal" or "pseudo" state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.

6.
Front Genet ; 12: 621049, 2021.
Article in English | MEDLINE | ID: mdl-34054913

ABSTRACT

Kidney stone disease is an urgent medical and social problem. Genetic factors play an important role in the disease development. This study aims to establish an association between polymorphisms in genes coding for proteins involved in calcium metabolism and the development of calcium urolithiasis in Russian population. In this case-control study, we investigated 50 patients with calcium urolithiasis (experimental group) and 50 persons lacking signs of kidney stone disease (control group). For molecular genetic analysis we used a previously developed gene panel consisting of 33 polymorphisms in 15 genes involved in calcium metabolism: VDR, CASR, CALCR, OPN, MGP, PLAU, AQP1, DGKH, SLC34A1, CLDN14, TRPV6, KLOTHO, ORAI1, ALPL, and RGS14. High-throughput target sequencing was utilized to study the loci of interest. Odds ratios and 95% confidence intervals were used to estimate the association between each SNP and risk of urolithiasis development. Multifactor dimensionality reduction analysis was also carried out to analyze the gene-gene interaction. We found statistically significant (unadjusted p-value < 0.05) associations between calcium urolithiasis and the polymorphisms in the following genes: CASR rs1042636 (OR = 3.18 for allele A), CALCR rs1801197 (OR = 6.84 for allele A), and ORAI1 rs6486795 (OR = 2.25 for allele C). The maximum OR was shown for AA genotypes in loci rs1042636 (CASR) and rs1801197 (CALCR) (OR = 4.71, OR = 11.8, respectively). After adjustment by Benjamini-Hochberg FDR we found only CALCR (rs1801197) was significantly associated with the risk of calcium urolithiasis development. There was no relationship between recurrent course of the disease and family history of urolithiasis in investigated patients. Thus we found a statistically significant association of polymorphism rs1801197 (gene CALCR) with calcium urolithiasis in Russian population.

7.
Ticks Tick Borne Dis ; 12(2): 101612, 2021 03.
Article in English | MEDLINE | ID: mdl-33291056

ABSTRACT

Wad Medani virus (WMV) belongs to the genus Orbivirus and is a poorly studied arbovirus with unclear medical significance. Presently, a limited number of WMV strains are characterized and available in NCBI GenBank, some isolated many years ago. A new WMV strain was isolated in 2012 from Dermacentor nuttalli ticks collected from sheep in the Tuva Republic, Russia, and sequenced using high-throughput methods. Complete coding sequences were obtained revealing signs of multiple intersegment reassortments. These point to a high variability potential in WMV that may lead to the formation of strains with novel properties. These new data on WMV can promote better understanding of: ecological features of its circulation; relationships within the genus Orbivirus; and the medical significance of the virus.


Subject(s)
Dermacentor/virology , Orbivirus/isolation & purification , Sheep/parasitology , Animals , High-Throughput Nucleotide Sequencing/veterinary , Molecular Conformation , Orbivirus/chemistry , Phylogeny , Sequence Analysis, RNA/veterinary , Sheep/virology , Siberia
8.
PhytoKeys ; 137: 1-85, 2020.
Article in English | MEDLINE | ID: mdl-31969792

ABSTRACT

Scorzonera comprises 180-190 species and belongs to the subtribe Scorzonerinae. Its circumscription has long been the subject of debate and available molecular phylogenetic analyses affirmed the polyphyly of Scorzonera in its wide sense. We provide a re-evaluation of Scorzonera and other related genera, based on carpological (including anatomical) and extended molecular phylogenetic analyses. We present, for the first time, a comprehensive sampling, including Scorzonera in its widest sense and all other genera recognised in the Scorzonerinae. We conducted phylogenetic analyses using Maximum Parsimony, Maximum Likelihood and Bayesian analyses, based on sequences of the nuclear ribosomal ITS and of two plastid markers (partial rbcL and matK) and Maximum Parsimony for reconstructing the carpological character states at ancestral nodes. Achene characters, especially related to pericarp anatomy, such as general topography of the tissue types, disposition of the mechanical tissue and direction of its fibres, presence or absence of air cavities, provide, in certain cases, support for the phylogenetic lineages revealed. Confirming the polyphyly of Scorzonera, we propose a revised classification of the subtribe, accepting the genera Scorzonera (including four major clades: Scorzonera s. str., S. purpurea, S. albicaulis and Podospermum), Gelasia, Lipschitzia gen. nov. (for the Scorzonera divaricata clade), Pseudopodospermum, Pterachaenia (also including Scorzonera codringtonii), Ramaliella gen. nov. (for the S. polyclada clade) and Takhtajaniantha. A key to the revised genera and a characterisation of the genera and major clades are provided.

9.
Gene ; 726: 144154, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31589962

ABSTRACT

In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.


Subject(s)
Allium/genetics , Gene Rearrangement/genetics , Genes, Plant/genetics , Onions/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , Evolution, Molecular , Genome, Chloroplast/genetics , Genome, Plant/genetics , Phylogeny , Plant Leaves/genetics , Pseudogenes/genetics , Sequence Analysis, DNA/methods
10.
Ticks Tick Borne Dis ; 11(2): 101333, 2020 03.
Article in English | MEDLINE | ID: mdl-31787560

ABSTRACT

Kemerovo virus (KEMV) is a member of the Great Island virus genetic group, belonging to the tick-borne arboviruses of the genus Orbivirus within the family Reoviridae. Nine strains of KEMV, which were isolated from various locations in Russia, were sequenced by high-throughput sequencing to study their intraspecific diversity and the interspecific relationships of viruses within the Great Island genetic group. For the first time, multiple reassortment within KEMV was reliably demonstrated. Different types of independently emerged alternative reading frames in segment 9 and heterogeneity of the viral population in one of the KEMV strains were found. The hypothesis of the role of an alternative open reading frame (ORF) in segment 9 in KEMV cellular tropism was not confirmed in this study.


Subject(s)
Genetic Variation , Genome, Viral , Orbivirus/genetics , Phylogeny , Russia , Sequence Analysis, DNA
11.
Genes (Basel) ; 10(2)2019 02 07.
Article in English | MEDLINE | ID: mdl-30736447

ABSTRACT

Plants are widely used for food and beverage preparation, most often in the form of complex mixtures of dried and ground parts, such as teas, spices or herbal medicines. Quality control of such products is important due to the potential health risks from the presence of unlabelled components or absence of claimed ones. A promising approach to analyse such products is DNA metabarcoding due to its high resolution and sensitivity. However, this method's application in food analysis requires several methodology optimizations in DNA extraction, amplification and library preparation. In this study, we present such optimizations. The most important methodological outcomes are the following: 1) the DNA extraction method greatly influences amplification success; 2) the main problem for the application of metabarcoding is DNA purity, not integrity or quantity; and 3) the "non-amplifiable" samples can be amplified with polymerases resistant to inhibitors. Using this optimized workflow, we analysed a broad set of plant products (teas, spices and herbal remedies) using two NGS platforms. The analysis revealed the problem of both the presence of extraneous components and the absence of labelled ones. Notably, for teas, no correlation was found between the price and either the absence of labelled components or presence of unlabelled ones; for spices, a negative correlation was found between the price and presence of unlabelled components.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Food Analysis/methods , DNA Barcoding, Taxonomic/standards , DNA, Plant/analysis , Food Analysis/standards , Repetitive Sequences, Nucleic Acid , Spices/standards , Tea/genetics , Tea/standards
12.
Ticks Tick Borne Dis ; 10(2): 269-279, 2019 02.
Article in English | MEDLINE | ID: mdl-30448254

ABSTRACT

Paramushir virus belongs to Sakhalin virus genogroup within Orthonairovirus genus and is one of the poorly studied viruses with unknown pathogenicity. At the moment, only one nearly complete sequence of Paramushir virus genome, isolated in 1972, is available. Two new strains of PARV were isolated in 2015 from a sample collected at the Tyuleniy Island in the Okhotsk Sea and sequenced using a combination of high throughput sequencing and specific multiplex PCR. Both strains are closely related to the early sequenced PARV strain LEIV-1149 K. The signs of intersegment reassortment and probable recombination were revealed, which point to a high variability potential of Paramushir virus and may lead to the formation of strains with novel properties, different from those of the predecessors. The new data regarding Paramushir virus can promote a better understanding of the diversity and relations within Orthonairovirus genus and help define intragenic demarcation criteria, which have not yet been established.


Subject(s)
Nairovirus/genetics , Phylogeny , Ticks/virology , Animals , Genome, Viral , High-Throughput Nucleotide Sequencing , Islands , Multiplex Polymerase Chain Reaction , Nairovirus/isolation & purification , RNA, Viral/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Recombination, Genetic , Russia
13.
Adv Virol ; 2018: 3248285, 2018.
Article in English | MEDLINE | ID: mdl-30158979

ABSTRACT

Advances in the next generation sequencing (NGS) technologies have significantly increased our ability to detect new viral pathogens and systematically determine the spectrum of viruses prevalent in various biological samples. In addition, this approach has also helped in establishing the associations of viromes with many diseases. However, unlike the metagenomic studies using 16S rRNA for the detection of bacteria, it is impossible to create universal oligonucleotides to target all known and novel viruses, owing to their genomic diversity and variability. On the other hand, sequencing the entire genome is still expensive and has relatively low sensitivity for such applications. The existing approaches for the design of oligonucleotides for targeted enrichment are usually involved in the development of primers for the PCR-based detection of particular viral species or genera, but not for families or higher taxonomic orders. In this study, we have developed a computational pipeline for designing the oligonucleotides capable of covering a significant number of known viruses within various taxonomic orders, as well as their novel variants. We have subsequently designed a genus-specific oligonucleotide panel for targeted enrichment of viral nucleic acids in biological material and demonstrated the possibility of its application for virus detection in bird samples. We have tested our panel using a number of collected samples and have observed superior efficiency in the detection and identification of viral pathogens. Since a reliable, bioinformatics-based analytical method for the rapid identification of the sequences was crucial, an NGS-based data analysis module was developed in this study, and its functionality in the detection of novel viruses and analysis of virome diversity was demonstrated.

15.
Biomed Res Int ; 2017: 4975146, 2017.
Article in English | MEDLINE | ID: mdl-28299328

ABSTRACT

Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.


Subject(s)
Aluminum/chemistry , Flax/genetics , Flax/metabolism , MicroRNAs/metabolism , RNA, Plant/metabolism , Crops, Agricultural/drug effects , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Flax/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , Genotype , Polymerase Chain Reaction , Signal Transduction , Soil/chemistry
16.
PhytoKeys ; (90): 89-112, 2017.
Article in English | MEDLINE | ID: mdl-29391852

ABSTRACT

Dryopteris blanfordii (C.Hope) C.Chr. is a member of the Dryopteridaceae, growing in high altitude Picea or Abies forests (2900-3500 m) in China and India. Phylogenetic relationships between D. blanfordii subsp. nigrosquamosa and closely related species of Dryopteris were investigated using a combined analysis of multiple molecular data sets (the protein-coding region of rbcL and matK genes and intergenic spacers psbA-trnH, trnP-petG, rps4-trnS, trnL-trnF and rbcL-accD). An assumption about the position of D. blanfordii subsp. nigrosquamosa within Dryopteris was made by using the Maximum Likelihood and Bayesian Inference approach and chloroplast marker sequences of Dryopteris species from GenBank. The results demonstrated that Asian taxa D. blanfordii subsp. nigrosquamosa and D. laeta as well as two American species D. arguta and D. marginalis belong to the same clade, all four of them being part of Dryopteris section Dryopteris.

17.
BMC Evol Biol ; 17(Suppl 2): 253, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297314

ABSTRACT

BACKGROUND: The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. RESULTS: High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). CONCLUSIONS: High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the phylogeny of blue-flowered flax species and also reveal intra- and interspecific divergence of the rRNA gene sequences.


Subject(s)
Biological Evolution , Flax/genetics , Genes, Plant , Genes, rRNA , High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Consensus Sequence/genetics , DNA, Ribosomal/genetics , Genetic Variation , Karyotype , Metaphase , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Species Specificity
18.
BMC Plant Biol ; 17(Suppl 2): 255, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297348

ABSTRACT

BACKGROUND: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. RESULTS: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns. We determined the marked conservation of gene content and relative evolution rate of genes and intergenic spacers in the IRs of Polypodiales. Faster evolution of the four intergenic regions had been demonstrated (trnA- orf42, rrn16-rps12, rps7-psbA and ycf2-trnN). CONCLUSIONS: IRs of Polypodiales plastomes are dynamic, driven by such events as gene loss, duplication and putative lateral transfer from mitochondria.


Subject(s)
Inverted Repeat Sequences/genetics , Plastids/genetics , Tracheophyta/genetics , DNA, Plant/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Phylogeny
19.
Front Plant Sci ; 7: 399, 2016.
Article in English | MEDLINE | ID: mdl-27092149

ABSTRACT

Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars.

20.
BMC Plant Biol ; 16(Suppl 3): 237, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-28105944

ABSTRACT

BACKGROUND: Cultivated flax (Linum usitatissimum L.) is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1) is the most studied modification. However, LIS-1 function is still unclear. RESULTS: High-throughput sequencing of transcriptome of flax plants grown under normal (N), phosphate deficient (P), and nutrient excess (NPK) conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. CONCLUSIONS: Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil. Besides, we have not identified any mRNA, which could be derived from LIS-1, in our transcriptome sequencing data. Expression of LIS-1 flanking genes, ING1 and KRP2, was suggested not to be nutrient stress-induced. Obtained results provide new insights into edaphic stress response in flax and the role of LIS-1 in these process.


Subject(s)
Flax/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Soil/chemistry , Flax/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...